[This question paper contains 4 printed pages.]

es.

Unique Paper Code

Duration: 3 Hours

Your Roll No.....

Maximum Marks: 75

P.T.O.

Sr. No. of Question Paper: 5802 H

: 237301

Name of the Paper : Probability and Statistical Methods - III

: B.Sc. (Hons.) Statistics

Name of the Course Semester III

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper. Attempt five questions in all selecting two from Section I
 - SECTION I

and three from Section II.

1. (a) Let X and Y be two random variables with variances σ_v^2 and σ_v^2 with correlation coefficient r. If U = X + KYand $V = X + \frac{\sigma_x}{r} Y$, find the value of K so that U and V are uncorrelated.

5802

- (b) What is the principle of least squares? Obtain the line of regression of Y on X. (a) Define Spearman's rank correlation coefficient. Obtain the value of rank correlation coefficient when each of
- the deviations is maximum. (b) If X and Y are independent gamma variates with parameters μ and ν respectively then show that the variables U = X + Y and $V = \frac{X - Y}{X + Y}$ are independent
- 3. (a) Prove that in a tri-variate distribution $\sigma_{1,23}^2 = \sigma_1^2 \frac{\sigma_1^2}{\omega_{11}}$ Hence or otherwise show that $\sigma_1^2 \ge \sigma_{1,2}^2 \ge \sigma_{1,23}^2$. Where symbols have their usual meaning.

between X_{1.3} and X_{2.3}

(b) Show that the correlation coefficient between the residuals X between X. and V. 2.13 is equal and opposite of that

SECTION - II

(a) State and prove generalised form of Bienayme Chebychev's inequality. Hence obtain Chebychev's inequality. inequality.

(b) If $X_1, X_2, X_3, ..., X_n$ are i.i.d random variables with mean μ and variance σ^2 (finite) and $S_n = X_1 + X_2 + ..., X_n$, then for $-\infty < a < b < \infty$;

 $\lim_{n\to\infty} P \left[a \le \frac{S_n - n\mu}{\sigma\sqrt{n}} \le b \right] \to \Phi(b) - \Phi(a) . \text{ Where } \Phi(.) \text{ is}$

the distribution function of standard normal variate.

(8,7)

- (a) Let X_1 , X_2 , X_3 ,..., X_n be i.i.d random variables with mean μ and variance σ^2 (finite). If $S_n = X_1 + X_2 + ..., X_n$, then examine whether the weak law of large numbers holds for the sequence $\{S_n\}$.
- (b) Define convergence in probability, convergence with probability one and convergence in mean square. Prove that convergence in mean square implies convergence
- in probability. (c) Let X be a discrete random variable with its characteristic function (q + peit)n. Obtain the probability function of X.
- (a) If (X, Y) is distributed as $N(0, 0, 1, 1, \rho)$ with joint p.d.f. f(x, y), then prove that

 $P(X>0\cap Y>0) = \frac{1}{4} + \frac{\sin^{-1}\rho}{2\pi}$.

- (b) Show that if X_1 and X_2 are standard normal variates with correlation coefficient ρ then the correlation coefficient between X_1^2 and X_2^2 is given by ρ^2 .
- (c) Write short notes on sin-1 transformation and Logarithmic transformation. (5,5,5)
- 7. (a) Let X follows $N_p(\mu, \Sigma)$ and further let X be partitioned as $X = \begin{pmatrix} X^{(1)} \\ X^{(2)} \end{pmatrix}$ in K and (p-k) component sub vectors
 - respectively. Find marginal distribution of $X^{(i)}$.

 (b) If $X_1, X_2, ..., X_k$ have multinomial distribution with joint distribution $X_1, X_2, ..., X_k$
 - distribution function given by $p(x_1, x_2, ..., x_k) = \frac{n!}{x_1! x_2! ..., x_k!} p_1^{x_1} p_2^{k_2} ... p_k^{x_k}$
 - where $0 \le x_i \le n$, $\sum_{i=1}^k x_i = n$, $\sum_{i=1}^k p_i = 1$.

Then obtain

- (i) The marginal distributions of X_i
- (ii) Co variance (X_i, X_j) , $i \neq j$ (iii) $\rho(X_i, X_i)$.

(8,7)